جبرهای اندازه و جبرهای گروهی وزندار

thesis
abstract

فرض کنید w یک تابع وزن بورل اندازه پذیر روی گروه موضعاً فشرده g باشد. در این پایان نامه نتایج اصلی از جبر گروه وزندار(l^1 (g,w و جبر اندازه وزندار (m_b (g,w شامل همانی تقریبی، منظم آرنز بودن و حاصلضرب های فشرده روی این دو ارائه می دهیم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

جبرهای فیستر با برگردان

در این مقاله به مرور فرم‌های دوخطی فیستر روی میدان‌ها و برگردان‌های فیستر روی جبرهای ساده‌ٔ مرکزی می‌پردازیم. همچنین به بیان حدس‌های مهم در این راستا، تلاش‌های انجام شده برای اثبات آن‌ها و نیز مسائل باز باقیمانده در مشخصه‌ٔ مخالف دو خواهیم پرداخت. درنهایت، تلاش‌های انجام شده برای تعمیم این حدس‌ها به مشخصه‌ٔ دو و تفاوت‌های نتایج به دست آمده در این مشخصه با سایر مشخصه‌ها نیز مرور می‌شوند.

full text

جبرهای باناخ انقباض پذیر

فرض کنید یک جبر باناخ باشد. ما نشان می دهیم که اگر یک ایده ال انقباض پذیر ازیک جبر باناخ باشد آنگاه برقرار است. سپس وجود یک خود توان می نیمال مرکزی را در یک جبر باناخ انقباض پذیرکه یک تابعک ضربی نا صفر روی آن موجود باشد ثابت می کنیم. همچنین مفهومb- انقباض پذیری و یکی از فرم های معادل آن را معرفی می کنیم و با مثالی نشان می دهیم که b- انقباض پذیری به طور اکید از انقباض پذیری ضعیف تر است.

full text

C*-جبرها و جبرهای کامیان-پسک تجزیه ناپذیر

فرض کنیم A یک گراف سطری- متناهی و K یک میدان است. در این مقاله، به مطالعه تجزیه‌پذیری جبر کامیان-پسک KP(A) و C*-جبر C*(A) متناظر با A می‌پردازیم. به ویژه، به کمک ویژگی‌های A و گروه‌وار G_A ، شرایط لازم و کافی برای این تجزیه‌پذیری ارایه می‌شود. علاوه بر این نشان می‌دهیم در شرایط خاص می‌توان جبر کامیان-پسک را به‌صورت حاصل‌جمع مستقیم متناهی از جبرهای کامیان-پسک تجزیه‌ناپذیر نوشت.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه کردستان - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023